

Refinery Pivot Points in a Refinery – Petrochemical Integrated Complex

Global Refining and Petrochemical Congress
17th -18th July, 2019

Rajesh Samarth
Vice President- Business Development

Challenges Facing Refiners

► Total Transport: Oil, Biofuels, Gas, Other

Reduced Growth in Fuel Demand

- Extended Fuel Mileage
- ► Enhanced Electric Vehicles
- ► Environmental Headwinds

Drivers of Rapid Petrochemicals Growth

Relative Olefins and Aromatics Demand vs GDP

Global Middle Class Growth

- ► From 2016 to 2040, 40% chemicals sector growth
 - ▶ Quality of Life Improvement
 - ► Rising Prosperity
 - ▶ Development of Middle Class
- Petrochemical growth exceeds GDP growth
 - ► Emerging Markets unprecedented Growth

McDermott: Profit Pivot Points

Synergies of Refinery / Petrochemical Integration

► **Recent Trend:** Greater Integration not just Co-location

- ▶ Position Petrochemicals Plants near:
 - ► Low-cost feedstock
 - ► Lower Transportation Costs for Feedstocks
 - ► Fuel Sources
 - ► Existing Infrastructure
 - Downstream Markets: PE / PP / PET

Complimentary Units

► Petrochemicals Provide High Value Outlet for Refiners

McDermott Technology – One Stop Shop

MCDERMOTT TECHNOLOGY

Chevron Lummus Global (CLG)

- Joint Venture
 - □ Chevron: Major Oil Company
 - □ **McDermott:** A Premier EPC Company
- □ 100+ Hydroprocessing Plants Designed Worldwide
- □ Active R&D Programs, Pilot Plant in Richmond, CA and Pasadena, TX

Lummus Technology

- □ Leading Technology Licensor
 - □ Refining
 - Petrochemical
 - Gas Processing
 - □ Coal Gasification Technologies
- □ 120+ Licensed Technologies
- → 3000+ Patents, Applications, Trademarks
- Industry Leading Ethylene Technology

Feed Flexible Petrochemical Complex

Mixed Feed Crackers

- Mixed Feed Steam Crackers Provide Ultimate Flexibility
 - ► Multiple Feeds and Products
 - ▶ Larger Capacity

Hydroprocessing

- Optimize Cracker Feeds
- Balance Hydrogen Consumption to Optimize Production of Chemicals
- HVGO Excellent Lubes or Cracker Feedstock

Mixed Feed Steam Cracker

- Feed Flexibility
- Cracking Severity Determined by Propylene to Ethylene (P/E) Ratio

Co-Product Selectivity

- Monetize valuable Co-products such as Butadiene, Paraxylene, BTX
- Olefins Conversion Technology maximizes C2-C3-C4 Product flexibility

Hydroprocessing H_2 Jet Diesel **LPG** Naphtha ISO **CRACKER VGO** Diesel **HVGO** H_2 Resid LC-Fining / LC-**ULSFO** Max / LC-Slurry

Miracle of Hydrogen Addition

Effectively prepares Feed to Mixed Feed Steam Cracker in terms of Feed Flexibility, Conversion, and Yield

Upgrading the Bottom of the Barrel

- Catalyst and Reactor configurations determine range of conversion
- Outlet for Py-Oil upgrading from Steam Cracker

Mixed Feed Steam Cracker

- ➤ SRT® Pyrolysis Furnace Module
 - ► High Yield
 - ► Long Run Length
- ▶ Optimized CAPEX / OPEX
 - ► Low Pressure Design vs Conventional Plants
 - ► Multi Component Refrigeration
 - ► Reduced Compressor Casings and Equipment Count

Feed Flexibility Typical Pyrolysis Yields (High Value Chemicals)

Cracking Severity

Cracking Severity	High	Low	
P/E Ratio	0.45	0.65	
Energy / kg Ethylene	Base	+ 16%	
Feed Rate	Base	+ 14%	
Ethylene Production	Base	Base	
Propylene Production	Base	+ 46%	

*P/E Ratio defined as Propylene / Ethylene Ratio

Co-Product Profit Pivot Point C4 Train (Optimized)

Co-Product Profit Pivot Point Pygas (Optimized)

Profit Pivot Points: Putting it all together

Case Study – Refinery / Petrochemicals Integration

Case	1	2	3	4	5
Reside Upgrading	No	LC-FINING	LC-FINING	LC-FINING	LC-SLURRY
Fuels Production	No	No	Yes	Yes	Yes
Fuel Oil Type	3% HSFO	1% LSFO	1% LSFO	1% LSFO	0.1% ULSFO
Additional Processing					
Crude (Arab Light), BPD	195,000	162,000	227,000	400,000	246,515
Ethylene, KTA	2,000	2,000	2,000	4,000	2,000
Propylene, KTA	1,480	1,493	1,469	2,805	1,489
Butadiene, KTA	357	357	347	774	326
Euro VI Diesel, BPD	0	0	74,500	94,265	106,000
Fuel Oil, BPD	54,000	25,000	20,000	36,935	8,500
Anode Coke, KTA					
Chemical Yield on Crude, %	58%	70%	49%	57%	45%
% IRR	Base	+7.8%	+9.8%	+18.4%	+10.4%

Notes

- 1. All cases includes Hydrocracker + Olefins Conversion Technology
- 2. All cases produce MTBE, Butene-1, Benzene, Xylenes
- 3. 3% HSFO priced at \$21/Bbl less than crude

Crude to Chemicals: A Disruptive Technology

Phase I: Integrated Crude to Chemicals

Phase II: Direct Crude to Chemicals

Source: Saudi Aramco Presentation At Baker Hughes (GE) 2018 Annual Meeting, Mr. Abdulaziz Al-Judaimi

Conclusion

- ► Focus on integration of refinery and Petrochemicals Units
- Rapid Petrochemicals Demand Provides Opportunities for Refiners to shift to Chemicals
- ► Profit Pivot Points will allow producers to pivot to meet changing market demands:
 - ▶ Hydrocracker
 - Mixed Feed Steam Cracker
 - ▶ Co-Product Management

Source: EIA and Global Data

Technology solutions exist to upgrade refined products to valuable petrochemicals

Contact Information:

Contact

Rajesh Samarth
Vice President- Business Development
Rajesh.Samarth@McDermott.com

Copyright 2019, Lummus Technology LLC All Rights Reserved

