

Valuable Chemicals From Cracker Pygas Maintain Competitiveness for Naphtha Crackers SULZER GTC Technology US, INC

Economical Ethylene Capacity for Recovering By-products

Economical to Produce

Naphtha Cracker Byproducts – Pygas GTC- Offered Overall Processing Scheme

C5 UTILIZATION

Pygas C5 Utilization

Primary Components of Interest

- Isoprene (2 methyl 1, 3 butadiene)
- Piperylenes (*cis & trans 1*, 3 pentadiene)
- CPD (cyclopentadiene)
- DCPD (dicyclopentadiene)

Other Components

- Isopentane
 Gasoline blendstock
- C5 Mono-olefins TAME, cracking, aromatization, resins
- Paraffins
 Cracker feed

Pygas C5 Utilization – GTC GT-C5/Isoprene

Pygas C5 Utilization – GTC GT-C5

Pygas C5 Utilization – GTC GT-Isoprene

Pygas C5 Utilization – GTC GT-C5

- Lower energy and capital cost for C₅ separation
 - Improved CPD/DCPD dimerization
 - State of the art separation
 - High value intermediates created for HCR
- High Selectivity catalyst used for selective acetylene hydrogenation
- Integrated C₅ recovery/HCR Product synergies
 - Improved feedstocks enhance performance of the HCRs
 - Improved system economics return of non-reactives
 - Guaranteed product off take for Pips and DCPD, with optional production of isoprene if desired
 - Reduced energy and capital by matching Pips & DCPD specs to HCR plant needs

C6-C8 UTILIZATION

Pygas C6-C8 Utilization

Pygas C6-C8 Utilization

Technologies for BTX Extraction

Liquid-Liquid Extraction (LLE)	Extractive Distillation (ED)
Conventional and out-dated	Most recent technology
More & larger equipment	Less & smaller equipment
Higher capital and larger plot size	Lower capital and smaller plot size
Higher utility consumption	Lower utility consumption
Complicated control	Simple control, easier to operate
Corrosion	None

Pygas C6-C8 Utilization

LLE vs ED

Extractive Distillation

Pygas C6-C8 Utilization – GT-BTX®

Extractive Distillation depends on a selective solvent to alter the boiling points of aromatics & non-aromatics to facilitate their separation by distillation.

Proprietary solvent of GT-BTX[®] Technology

Solvent selectivity is critical

Solvent	α n-C ₇ /Benzene
Techtiv [®] -500	2.44
Sulfolane	2.00
N-methyl Pyrolidone	1.95
N-formyl morpholine	1.89
Glycol blends	1.35
None	0.57

C8 UTILIZATION

Styrene And Close-boiling Pygas Components

Separation Between Styrene and Close-boiling Components

- Solvent-based system to extract and purify styrene
- Extractive distillation alters boiling points of components

Component	NBP (° C)	Relative volatility to Styrene	Relative volatility to Styrene (Enhanced)
Styrene	145	-	-
Ethylbenzene	136	1.3	2.6
Ortho-xylene	144	1.0	1.8
DCPD	152	0.6	1.4

Heart cut distillation followed by ED

Recovery of styrene from the raw pyrolysis gasoline derived from the steam cracking of naphtha, gas oils, and natural gas liquids (NGL)

ASTM Specifications

Styrene Monomer product shall meet the general standard specification for Styrene ASTM D2827-13 as follows:

Property	Unit	Specification	ASTM Test Method
Color	Pt/Co scale	15 max	D5386
Styrene purity	wt%	99.8 min	D5135 or D7504
Aldehydes (as benzaldehyde)	wt%	0.01 max	D2119 or D7704
Peroxides (as H_2O_2)	mg/kg	50 max	D2340
Polymer	mg/kg	10 max	D2121, Test Method A
Inhibitor	mg/kg	10-15	D4590
Ethylbenzene	mg/kg	500 max	D5135 or D7504
Benzene	mg/kg	1 max	D6229
Appearance		Clear liquid free of sediment and haze at 65 (18 °C) to 78°F (25 °C)	

- Produces polymer-grade styrene at 99.8+% purity
- Allows the recovery of low EB-content mixed xylenes for paraxylene production
- Debottlenecks pygas hydrotreater and extends cycle length
- Reduces hydrogen consumed in hydrotreating
- Optimized solvent system and design provide economical operating costs

Basis: 30,000 tpa styrene

Typical USGC grassroots capital cost (ISBL)	\$40 million
Styrene value in pygas	\$600/ton
Styrene product sales value	\$1300/ton
Net processing cost	\$200/ton
Net profit	\$14 million/yr
Simple annual ROI	35%

- Existing HDT greatly debottlenecked for lower H2 consumption and longer catalyst life
- Additional value for xylenes upgrade

GT-Styrene[®]

- GT-Styrene[®] technology effective complement to world-scale naphtha crackers
- GT-Styrene[®] provides excellent value for steam crackers which produce more than 600,000 tpa ethylene, based on liquid feedstock or 1,200,000 tpa ethylene from a typical mixed feedstock
- Reduced-EB xylenes available as co-product of GT-Styrene[®]
- H₂ consumption is reduced using GT-Styrene[®]
- 6 licensed units, 3 in operation for more than 5 years

C9+ UTILIZATION

Pygas C9+ Utilization – Naphthalene, Solvent, & Resin

Pygas Upgrade Summary

Summary of Upgrade Options			
C5 - C12	GT-Product Area	Capital MM\$	~ Payback (years)
С5	Piperylenes/DCPD : GT-C5 for HCR GT-Isoprene™	25 35	3
C6-C8	Benzene, Toluene, Xylenes (GT-BTX®)	25	2
C8	Styrene (GT-Styrene®)	40	2.5
С9	Resin Oil, HCRs	10	1
C10	Naphthalene	15	2
C11 - C12	Aromatic Solvents	5	1

GTC's cutting-edge technologies and innovative process design help the liquid crackers greatly improve the economics and competitiveness.