Novolen® PP Technology

Global Refining and Petrochemical Congress
17th -18th July, 2019
McDermott cautions that statements in this presentation which are forward-looking, and provide other than historical information, involve risks, contingencies and uncertainties that may impact actual results of operations. These forward-looking statements include, among other things, statements about anticipated cost and revenue synergies, accretion, best-in-class operations, opportunities to capture additional value from market trends, maintenance of a consistent customer approach to pricing, safety and transition issues, free cash flow, plans to de-lever and accretion. Although we believe that the expectations reflected in those forward-looking statements are reasonable, we can give no assurance that those expectations will prove to have been correct. Those statements are made by using various underlying assumptions and are subject to numerous risks, contingencies and uncertainties, including, among others: the possibility that the expected synergies from the recently completed combination will not be realized, or will not be realized within the expected time period; difficulties related to the integration of the two companies; disruption from the combination making it more difficult to maintain relationships with customers, employees, regulators or suppliers; the diversion of management time and attention related to integration matters; adverse changes in the markets in which the company operates; the inability to execute on contracts in backlog successfully; changes in project design or schedules; the availability of qualified personnel; changes in the terms; scope or timing of contracts; contract cancellations; change orders and other modifications and actions by customers and other business counterparties; changes in industry norms; and adverse outcomes in legal or other dispute resolution proceedings. If one or more of these risks materialize, or if underlying assumptions prove incorrect, actual results may vary materially from those expected. You should not place undue reliance on forward-looking statements. For a more complete discussion of these and other risk factors, please see the company’s most recent filings with the Securities and Exchange Commission, including its annual report on Form 10-K for the year ended December 31, 2017 and subsequent quarterly reports on Form 10-Q. This presentation reflects the views of the company’s management as of the date hereof. Except to the extent required by applicable law, the company undertakes no obligation to update or revise any forward-looking statement.
History of Novolen, Scope & Organization
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>BASF starts Novolen Technology development in Germany</td>
</tr>
<tr>
<td>1967</td>
<td>First Commercial Novolen PP Production Plant (10 KTA)</td>
</tr>
<tr>
<td>1978</td>
<td>Commercialization of Random- and Impact Copolymers</td>
</tr>
<tr>
<td>1983</td>
<td>Commercialization of Terpolymers</td>
</tr>
<tr>
<td>1990</td>
<td>Super High Impact Copolymers with > 50 % of Rubber</td>
</tr>
<tr>
<td>1994</td>
<td>Metallocene-PP</td>
</tr>
<tr>
<td>1998</td>
<td>Single Line Plant > 225 KTA including Impact Copos (Wesseling, Germany)</td>
</tr>
<tr>
<td>2000</td>
<td>BASF and Shell merge polyolefins businesses, and are forced to divest 1 licensed PP technology. Novolen technology acquired by ABB Lummus + Equistar.</td>
</tr>
<tr>
<td>2002-2006</td>
<td>Lummus starts to actively license Novolen technology, awards in Middle East, China, India. > 5,000,000 mta licensed capacity. Single Line Capacity > 300 KTA, Single Reactor Capacity > 200 KTA.</td>
</tr>
<tr>
<td>2007</td>
<td>CB&I acquires the Lummus Technology business (including Novolen)</td>
</tr>
<tr>
<td>Year</td>
<td>Event</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>2009</td>
<td>New Novolen R&D Center at BASF Ludwigshafen.</td>
</tr>
<tr>
<td>2012</td>
<td>Scaling up continues: Available Single Line capacity exceeds 600 KTA</td>
</tr>
<tr>
<td>2013</td>
<td>Novolen and Clariant start joint Development and Commercialization for PP Catalysts</td>
</tr>
</tbody>
</table>
| 2015 | NHP® catalyst successfully commercialized
Total Novolen PP licensed capacity exceeds 10,000,000 mta |
| 2017 | New Novolen Pilot Plant at CB&I Research & Development Centre (Pasadena, TX) |
| 2018 | New NHP® Catalyst Production Plant (JV with Clariant)
McDermott and CB&I combine, continue Lummus Technology business |
| 2019 | Total Novolen PP licensed capacity approaches 14,000,000 mta globally
No.1 Licensing position in India with total of 3,100,000 mta HP / RCP /ICP |
Confidential

Novolen Worldwide Locations & Licensees

- Lummus Novolen Headquarter, Mannheim, Germany
- Pilot Plant, Pasadena, TX USA
- Catalyst Production Plants, Louisville, KY USA / Jinshan, China
- Novolen Licensees with active Plants / Projects
Novolen Technology - Scope

- Technology Licensing
- Catalyst Supply
- Research & Development
- Project- and Engineering Solutions
- Lifetime Technical Service & Product Support
Novolen Process
Novolen Technology - Process

PP General Process Principles

✓ Catalyst system, gas phase composition, and additivation + MW control in extruder define PP product produced.

✓ Polymerization reaction is exothermic: cooling required, and effective continuous movement of polymer particles.

Novolen process concept

✓ Novolen process uses a helical agitator to keep particles in motion and move product between reactor cooling zones (top + bottom).

✓ Most compact and efficient reactor system:
 ✓ Dense bed (non-fluidized), no de-entrainment zone.
 ✓ Full condensing mode cooling
Novolen Process

- Gas phase process: highest product capabilities
- Mechanically agitated dense powder bed
- Direct catalyst injection
- Efficient polymerization heat removal through evaporative cooling in full condensation mode
- Single-, Parallel-, Cascade configurations available (+ VRC® Versatile Reactor Concept)
- Identical reactors
- No idled equipment during homo/random production
- Simple gas-polymer separation
- Lowest TIC known in the industry
Novolen Technology - Process

Single Reactor
Homo-, Random Copolymer

Cascade Reactor Concept
Homo-, Random-, Impact Copolymer

Parallel Reactor Concept
Homo-, Random Copolymer
(incl. Bimodal)

VRC® Versatile Reactor Concept
Homo-, Random-, (incl. Bimodal)
Impact Copolymer

* two extruders at capacities > 580 kta
Reactor / Powder Flow

✓ Helical agitator physically lifts PP polymer powder up, gravity flow down in center → continuous and reliable polymer particle movement.

✓ Powder movement is independent from the particle size and shape → low sensitivity to fines.

✓ Agitator preventing polymer sticking to the reactor wall enable high co-monomer content.

✓ Minimized polymer inter-particle friction leading to less static electricity build → no wall/dome fouling

✓ No blow-down system, powder remains inside the reactor. Reactor restart possible within 20-30 minutes.
The Novolen Process

- Degassing vessel
- Purge column
- Centrifugal dryer
- Stirred gas phase reactor
- Discharge cyclone
- Extruder
- Mixing silo

- Reaction
- Polymer-gas separation
- Extrusion + mixing
Novolen References
Novolen has licensed PP technology to 46 plants located over the world.

Total Licensed capacity = 13.9 million tons per year
No.1 Licensor in India (35% market share)
Novolen Products
Novolen Product Range

All Products made by Novolen Gas Phase Technology (max. two reactors)
<table>
<thead>
<tr>
<th>Grade</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziegler-Natta PP</td>
<td></td>
</tr>
<tr>
<td>Homopolymers</td>
<td>80</td>
</tr>
<tr>
<td>Random Copolymers</td>
<td>25</td>
</tr>
<tr>
<td>Impact Copolymers</td>
<td>33</td>
</tr>
<tr>
<td>Random Impact Copolymers</td>
<td>1</td>
</tr>
<tr>
<td>Terpolymers</td>
<td>6</td>
</tr>
<tr>
<td>Metalloocene PP</td>
<td></td>
</tr>
<tr>
<td>m-Homopolymer</td>
<td>12</td>
</tr>
<tr>
<td>m-Random Copolymers</td>
<td>2</td>
</tr>
</tbody>
</table>
Few applications:

Electrical Appliances:
1142 NC, 1143 NC

Furniture:
1040 N, 1100 N/NC
Caps & Closures: 1150 RC
Thin walled packaging: 1148 TC
Staple Fibres: 1101 N/S
Water Quenched & Cast Film
Confidential

Novolen Products

Sewage & Drainage Pipes

Pressure Pipes
High Transparency Packaging
Hygiene Applications, e.g. Baby Diapers

Heavy Duty Yarns
Heavy Duty Boxes

Raffia

Low Temp. Packaging
Novolen Catalyst
Clariant is Novolen’s exclusive co-operative partner for PP catalyst R&D and commercial supply: “Serving the global PP catalyst market.”

- Joint R&D in Ludwigshafen and Frankfurt, Germany.
- Pilot Plant in Pasadena, TX, USA
- World scale jointly funded catalyst production plant in Louisville, KY, USA
NHP®401 Series

- Single catalyst system, commercially implemented since 2015 across all continents
- NHP4010 and NHP4010S
- NHP4012 and NHP4012S (suspended in mineral oil)
- Covers the entire product range HP/RCP/ICP
- XS control with silane such as BUPS, C-Donor, D-Donor
- Advanced & special grades by Silane selection
- Catalyst REACH compliant, PP products do not require REACH registration.

NHP®402 Series

- Excellent operability and high activity and hydrogen response demonstrated in multiple commercial scale runs
- Phthalate free
- Single catalyst to cover the entire product range HP/RCP/ICP
- No/minimal Silane needed, keeping activity high across all products
- High XS safeguard
- Catalyst REACH compliant, PP products do not require REACH registration.
Novolen R&D
Development Fields

✓ Process development
 > 50 improvements implemented in 10 years

✓ Product development
 Up-date of products to cope with modern converting processes
 Grade innovations e.g. 12 new grades; 14 developmental grades

✓ Catalyst development
 Molecular and kinetic Modelling (Cheops & University of Halle)
 Screening of external- internal donors

✓ Pilot Plant in Pasadena, US

Fully equipped R&D laboratory
Catalyst and Polymer research work hand in hand!
Lummus Novolen Technology GmbH offers NOVOLEN technology and technical support services for the manufacturing of a full range of NOVOLEN polypropylene grades. The NOVOLEN technology includes NOVOLEN process reactors, which can be used with added flexibility by implementing the proprietary VRC reactor system, which allows for maximum product range/capacity flexibility. The Novolen technology also includes NHP catalysts for the production of high performance polypropylene grades and NOVOCENE metallocene catalyst for the production of special polypropylene grades.